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ABSTRACT 

A subset A of E3 is called strictly antipodal provided that for every pair 
Xt, X2 of points of A there is a pair//1, //2 of parallel supporting planes 
of A such that H~t'3 A = (X~}. The main result asserts that a strictly 
antipodal set has at most five points. This strengthens a recent result of Croft 
[2]. 

1. Introtluetion. For  a convex polyhedron K let v(K) denote the num- 

ber of  vertices of  K. I f  K1 and K 2 are convex polyhedra it is clear that 

v(Kl + K 2 ) <  v(K1).v(K2). I t  is easy to find examples showing that equality 
may hold for suitable K 1 , K  2 in E3; i fK I ,K2 ,  c E 2, then 

v(KI + K2) <= v(KO + v(K2). 

More complicated, and unsolved in the general case, is the following related 
problem: 

I f  K is a convex polyhedron in E", with v -- v(K) vertices, how many vertices 
can K * = K + ( - K )  have? I t  is easily checked that,  independent of n, 

v(K*) <= v(v - 1). However, equality in this relation can take place only if v is not 
too large with respect to n. 

Let f (n )  denote the maximal v such that  there exists an n-dimensional convex 
polyhedron K with v = v(K) and v(K*) = v(v -- 1). It  is easily seen that f (2 )  = 3. 
In Section 2 we shall prove the following result. 

THEOREM. f (3 )  = 5. 
As easy corollaries we shall obtain (in Section 3) a simple solution of a problem 

of Erd6s 1-5] recently solved by Croft [2], as well as a number  of  results on families 
of  translates of  convex polyhedra in E a. Some additional remarks and problems 
are also given in Section 3. 

2. Proof  of the Theorem. For  an arbitrary set A c E" let a pair of  points 

X a , X  2 c A  be called strictly antipodal if  there exists a pair H1,H 2 of (distinct) 

parallel supporting hyperplanes of  A such that A n Hi = {Xi} for i = 1,2. 

A set A is called strictly antipodal provided ever y two points of  A are strictly 
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antipodal. Let g(n) denote the maximal number of points in a strictly antipodal 
set A c E". The following assertion is obvious: 

LEMMA. The set of  vertices of a convex polyhedron K is strictly antipodal 
if and only if v(K*) = v(K) .(v(K) - 1). 

I f  A is a strictly antipodal set and K its convex hull, then A coincides with the 

set of  vertices of K. Therefore, the lemma implies that f ( n )  = g(n). 
In order to prove the Theorem it is sufficient to show that the common value 

o f f (3 )  and of  g(3)is 5. Since f (3)  > 5 (see Section 3) and since every subset of a 
strictly antipodal set is strictly antipodal, we have only to show that no 6-pointed 
set in E a is strictly antipodal. 

Assuming this to be false, let A be a six-pointed strictly antipodal set in E 3, 

with convex hull K. Because o f f (2 )  = g(2) = 3, all the faces of K are triangles. 
Counting incidences and using Euler's formula it follows at once that K must be 
a polyhedron of  one of  the two types represented in Figure 1 by their Schlegel 

diagrams. 

D B 

Figure 1 

We first note that K cannot  have configuration II. Indeed, if there would exist 

such K, in view of  the affine invariance of  strict antipodality we could assume 
that K has the form indicated in Figure 2. Since the segment E F  is not an edge of  
K, min {a,~} < 1. Without loss of  generality we assume that a < 1, and we note 

A cf E 

D = ( - 1 , - 1 , 0 ) ;  E = (a ,b ,c ) ;  F = (o:,fl, y). 

Figure 2 

A = (1,0,1); B = ( 1 , 0 , - 1 ) ;  C = ( - 1 , 1 , 0 ) ;  
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that E is contained in the wedge formed by the planes through ACD and BCD. 
Considering the sections of K by the planes z = 0 resp. z = c it is immediate that 
C and E are not strictly antipodal. 

Thus we may assume, for the remaining part of the proof, that K has con- 
figuration I; without loss of generality we may therefore assume that K has the 
form indicated in Figure 3. 

¢ 

F E 

g~ D 

Figure 3 

A = ( - 1 , - 1 , 0 ) ;  8 = ( - 1 , 1 , 0 ) ;  C = ( 1 , 0 , 1 ) ;  

O = ( 1 , 0 , - 1 ) ;  E = (a,b,c);  F = (a, fi, T). 

Since sufficiently small displacements of the points of a strictly antipodal set 
do not destroy strict antipodality, it follows that no generality is lost in assuming 
that no edge of K i s  parallel to a face o f K ,  and that I b[ + [c[ ~ 1, [fll + [Vl ¢ I. 
It follows that K* = K + ( -  K) will have 16 triangular faces (called t-faces in 
the sequel), and that all other faces of K* are parallelograms (called p-faces in 
the sequel). Using again a count of incidences and Euler's formula, it is easily 
found that K* has 20 p-faces. 

We shall end the proof of the Theorem by examining the construction of K* and 
by showing that it cannot contain 20 p-faces. 

Let K 1 denote the convex hull of {A, B, C, D, E}. Then K* is a polyhedron with 
the vertices + _ ( C - A ) = + ( 2 , 1 , 1 ) ,  _ ( D - A ) = + ( 2 , 1 , - 1 ) ,  + _ ( C - B ) =  
-I-(2,-1,1), +__ (D-B)=___(2 , -1 , -1 ) ,  ___(B-A)= +__(0,2,0), + ( C - D ) =  
+(0,0,2) ,  _+ (E - A) = ___ (I + a, 1 + b,c), + ( E - B ) = _ + ( 1  + a , - l + b , c ) ,  
+__(E- C) = +_(-1  + a , b , - 1  + c), +_(E-  D) = +__(-1 + a,b, 1 + c). Since K 
is of type I, we have a > 1; this and the convexity of K* imply that I bl + I c I < 1. 
(Indeed, by considering the vertices C -  A, D -  A, C -  B, D -  B, E -  A and 
E - B it follows from a > 1 that I c[ < 1. Then, assuming without loss of genera- 
lity that c > 0 and b + c > 1, a consideration of the vertices C - D, C - B, E - B, 
E - D, leads to the contradiction that C - A is not a vertex of K*). Projecting 
orthogonally the part of K~ contained in the half-space E + = {(x, y, z)l x > 0} 
onto x = 0, we obtain a configuration of the type represented in Figure 4a. De- 
noting by K 2 the convex hull of {A, B, C, D, F}, the same reasoning applied to K~ 
leads to a configuration of the type given in Figure 4b. 
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Figure 4a Figure 4b 

Now, K* is the convex hull o fK~  u K* u {E - F , F  - E}. Obviously, E - F 
and F - E are incident only to t-faces of K*; therefore the number of p-faces of 
K* at most equals the number of p-faces in the convex hull Q of K* t3 K*. But 
the latter number is at most 12. Indeed, superimposing Figures 4a and 4b, we 
observe that every p-face of Q is a p-face of either K* or K*, and that only one 
p-face of Q contained in the half-space E* can be incident to each of the vertices 
C - A , D - A , C - B , D - B .  

Thus Q has at most four p-faces contained in E ÷ ; by symmetry the same number 
of p-faces of Q is contained in the half-space E. Together with the four p-faces 
parallel to the x-axis, this yields at most 12 p-faces for Q, and thus also for K*, in 
contradiction to the former assertion that K* has 20 p-faces. 

This completes the proof of the Theorem. 

3. Some related results and problems. 
i) Erd~Ss [5 3 posed the problem of determining the maximal number e(n) of 

points in E ~ such that all the angles determined by triplets of the points be acute. 
For n = 3 Croft [2] recently established that e(3) = 5. This results also from our 
Theorem and from the obvious assertion e(n) < g(n). 

ii) The inequality e(n) >= 2 n -  1 was established in [3] by means of the 
e n following example (reproduced here for the sake of completeness): Let { ~} ~ = 1 be 

mutually orthogonal unit vectors in E ". The (2n - D-pointed set { A , B a , ' " , B , ,  

C2, " " , C ,  satisfies Erd6s' condition if, e . g . ,  A = ea, Bk = ~kel + ek, 

Ck = -- eke1 -- % k = 2, 3, . . . ,  n, where all ~k'S satisfy 0 < ~k < 1 and are diflerent 
from each other. 

iii) As mentioned (in part) in [3], it is easily shown that g(n) is also the maximal 
number of members in any family ~ of translates of a convex body K c E", 
provided the family satisfies any of the following conditions: 

(a) The intersection of any two member.s of oF is a single point ;  
(b) The intersection of  all members of s f  is a single point, which is also the 

only common point of any two members of S ;  
(c) The intersection of any two members of o~/" is (n - 1)-dimensional. 
The same is true if  in (a) or in (c) the attention is restricted to centrally symmet- 

ric K. 
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iv) The restriction o f ~  to families of  translates of one convex body is essential 
in iii). This is obvious in case of conditions (a) and (b); in the case of (c) the bound 
is 4 for n = 2 (while g(2) = 3); already for n = 3 it has been proved repeatedly 
(e.g. by Tietze, Besicovitch, Rado; see [4] for references to these and some related 
results) that there exists no finite bound. In [4] it is also pointed out that arbitra- 
rily large families X in E 3, any two of whose members have a 2-dimensional 
interzection, are obtainable as the Schlegel-diagrams of the duals of g-dimensional 
"neighborly polytopes" (see [7]). This was known, however, already to BrOck- 
ner [1]. 

Nevertheless, the following question seems to be open even for n = 3: How many 
members can a family of centrally symmetric convex bodies in E" have, if every 
two have an (n - 1)-dimensional intersection? 

v) Among unsolved problems related to the Theorem of the present paper 
we mention: 

(a) The determination of e(n) and of J (n )=  g(n) for n > 3; in particular, 
is e(n) = g(n) for all n? 

(b) The determination of h(k,n) = max {v(K + ( -  K)) IK c E n, v(K) = k} 
for k > 2n, n > 3. 

REMARK. The example ii) above implies h(k, n) = k ( k -  1) for n + 1 < k < 2n - 1 ; 
for k > n = 2, we have h(k ,2)=  2k. This follows from the observation that 
h(k, n) = 2s(k, n), where s(k, n) is the maximal number of strictly antipodal pairs 
of vertices for a convex polyhedron K c E" with v(K) = k, and the assertion 
s(k,2) = k. To prove this latter assertion assume that s(k,2) > k for some k. Let 
ko be the minimal k with this property and let K, with v(K)= ko, be a ko-gon 
such that more than k o pairs of vertices of K are strictly antipodal. Then at least 
one vertex Vo is antipodal to some three consecutive vertices Vi-1, Vu V~+ 1 of  K;  
but then V~ is easily seen to be strictly antipodal only to Vo. Thus the convex hull 
of the k o - 1  vertices of K different from V~ yields an example showing 
s(ko - 1, 2) > ko - 1, in contradiction to the minimality of k o. 

It is worth mentioning that s(k,3)>__ [ k / 2 ] . [ k (  + 1)/2] + 2 for k >__ 4, the 
difference in behavior between s(k, 2) and s(k, 3) being similar to the jump in the 
number of times the diameter of a set is assumed in 3- and 4-dimensional sets 
(Erd~Ss [6]). The above inequality is easily established by placing approximately 
half of the points on each of two suitable circular arcs. 

vi) Klee [8] defined a pair of points X1, X 2 of a set A c E" to be antipodal 
provided there exist distinct parallel supporting hyperplanes HI,  H 2 of  A such 
that Xi e A c3 Hi, i -- 1, 2; he also asked about the maximal number of points in a 
set A c E" such that every two points of A are antipodal. It was established in [3] 
that the required number is 2". In analogy to the above definition of s(k, n) one 
may ask what is the maximal number a(k,n) of pairs of antipodal points in 
k-pointed sets in E". While the problem is open for n > 3, it can be shown by 
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arguments  similar to those used above in connection 

a(k, 2) = [3k/23. 

with s(k, 2) that  
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